E; terminalworks

ASP.NET Core PDF Viewer - User Guide

EDPDF

ASP.NET Core PDF Viewer
User Guide

TerminalWorks
ASP.NET Core PDF Viewer
Usage Guide

Page 1 | support@terminalworks.com



6 terminalworks

Contents
1Y oY1 U | TP TSR PPRTOUPROTOPSOPPONt 4
REGUITBIMENTS .ttt e ettt e e e e s et b et e e e e e e e s aabbbeeeeeeesesaansbbaeeeeesesnnsrneaes 4
U] o] e To g =T l o] e 1NV =T PP 4
SUPPOrted fUNCLIONAIITIES ....vveeiiiieee e e e e e rtre e e bae e s e e bt e e e eares 4
Standard VIEWET FEATUIES ....coueiieeieee ettt sttt ettt ene e 4
07T 1] 1 = 5
[ o XNV o I T o o] LV A [Tol=Y o YT SRR PR 5
INSTAIATION L.ttt ettt e st s e st e e sab e e s be e e ar e e s beesneeesabeeenrean 5
RAZOI PGS ... s 6
IMIVC ettt et ettt e b e s bt s at e et e et e e bt e she e s a bt e a bt e b e e bt e ebe e eae e eat e et e e beenheesanesaneeane 7
2] 72 ] OO PO PO PRP U SRUPOPRPPR 9
LTV oY XY =T 4 o1 o] 1Y PP 10
Blazor component and Blazor rendering MOdES........cuiuiuiiieiiiieieiiiiee e e 11

For WebAssembly app, from .NET 5, for hosted WebAssembly, available render modes are: 11

) =Y [l =T 0 To [T oV~ 11
] =30 Y o Y=Y ok RS 12
IE11 and Blazor/WebASSEMDBIY .......oooviiiiie ettt ettt e ettt eeeaee s 12
IE11 and our WEB PDF viewer KNOWN iSSUES ......cccueruiriiiiiieniienienie e 12
VAN =T GO ] o] o 1P UPPPR PP 12
How to open document automatiCally........coccuieiiiiciiii i 13
Switching between single and Multi PAZE VIEW .....cooouiieieiiiiee et 14
Setting available ZOOM OPLIONS ......oiiiiiiiecee e e e e erre e e e abe e e e e abae e e e eares 15
Setting available toolbar OPLIONS .........eeviii i 16
How to enable or disable text SEleCtioN.........cccevierieiiiiiieeee e 17
How to change or translate component built-in teXtS......cccovviiiiiiiiii e 17
Setting available find OPtiONS ......vvii i 17
Setting available bookmarks Options ........cocceiiiiiii e 18
CUSTOMIZATION ...t e et e et e e e e e s sr e e s s ne e e e s sanr e e e s sneeeeeaane 19
Changing the themME ... ... e e e e e e e e e e e e e e e e e e s ennrraaees 19

Page 2 | support@terminalworks.com



6; terminalworks

Creating CUSTOM CSS thEME ...coieeiiie et e e e e et ae e e eeabae e e eares 20
Y Yo ¥ T=dT o= o ) £ PSR 21
Translating Ul @Nd MESSAZES ....uuiiiiriiiiieiiieeieiieee e ectiee e ettt e e s ettt e e s st e e s ssbteeesssstaeessastaeessaseaeessnns 22

Page 3 | support@terminalworks.com



6; terminalworks

About

TerminalWorks ASP.NET Core PDF Viewer is a web component for PDF display in ASP.NET Core
applications.

Our component is based on reliable Mozilla PDF viewer pdf.js https://mozilla.github.io/pdf.js

Official web page: https://www.terminalworks.com/web-pdf-viewer

Requirements
ASP.NET Core 3.1 or newer.

It is a Razor class library and supported ASP.NET Core tecnologies are: Blazor, RazorPages, MVC
and WebAssembly.
It is build as a .NET Standard 2.1.

Supported browsers

All modern browsers, including IE11, are supported.
IE10 and older IE versions aren't supported.
Safari is supported from version 11 and above.

Supported functionalities

e mobile responsive

e accessiblity friendly

e standard viewer features
e easy to translate

e customizable themes

Standard viewer features

e open and download PDF
e display annotations

e zoOom

e single/multi-page view
e select texts

e rotate

e print

e bookmarks

e page navigation

e search PDF

Page 4 | support@terminalworks.com



; terminalworks

Licensing

If not licensed, TWPdfViewer will be fully functional but it will show Demo watermark.

License is valid for 1 year free upgrades and official support.

After that, TWPdfViewer will work for all the versions of the component which were available at
the time of licensing.

It is possible to buy additional license upgrade.

For your project, it is enough that you call this code just once, but before TWPdfViewer
component is used.
If you don't apply a correct license, demo watermark will be shown.

using Terminalworks.PdfViewer.AspNetCore;

var licensing = new Licensing (companyName, licenseKey);
if (!'Licensing.IsLicensed) {

var error = Licensing.LicenseStatus; // information why it isn't
valid

}

Installation

This installation guide will guide you trough all the needed steps to get started with ASP.NET Core
PDF Viewer.

Please make sure to follow the instructions depending on the technology you're using in your
project.

Make sure to add a reference to Terminalworks.PdfViewer.AspNetCore component. You can
reference it through NuGet.

Run the following command in the Package Manager Console:

install-package Terminalworks.PdfViewer.AspNetCore

Each installation, no matter the technology you're using has 3 simple steps:
1. Add link to needed CSS files

2. Add link to needed Javascript files
3. Addthe component to the page

Page 5 | support@terminalworks.com



; terminalworks

Steps for using TWPdfViewer component in Razor Pages
1. Inyour HTML section of the page, you will need to add 2 CSS links.

File location: Pages\Shared\_Layout.cshtml|

<head>
<!-- your other head content -->

@RenderSection ("Head", required: false)
</head>

File location: Pages\{YOUR_PAGE}.cshtml (e.g. Index.cshtml)

@section Head {
<link rel="stylesheet"
href="/ content/Terminalworks.PdfViewer.AspNetCore/css/tw-pdf-
viewer.
<link rel="stylesheet" id='tw-web-theme'
href="/ content/Terminalworks.PdfViewer.AspNetCore/css/themes/
white-shapes/tw-pdf-viewer-theme.css" />

tw-pdf-viewer.css is a general CSS of TWPdfViewer and we recommend that you don't change it.
tw-pdf-viewer-theme.css is theme specific.
You can read more about changing theme at Changing the theme

2. Add needed Javascript as shown in the example below

File location: Pages\Shared\_Layout.cshtml

<head>
<!-- your other head content -->
@RenderSection ("Scripts", required: false)
</head>

File location: Pages\{YOUR_PAGE}.cshtml (e.g. Index.cshtml)

<body>
<!-- your other body content -->
@section Scripts {
<script src='/ content/Terminalworks.PdfViewer.AspNetCore/js/
pdf.js'></script>

<script src='/ content/Terminalworks.PdfViewer.AspNetCore/
tw viewer.js'></script>

}
</body>




; terminalworks

3. Add the component to your page

File location: Pages\{YOUR_PAGE}.cshtml (e.g. Index.cshtml)

Qusing PdfViewer = Terminalworks.PdfViewer.AspNetCore

<component
type="typeof (PdfViewer)"
param-Id="@ ("twPdfViewerl")"
render-mode="Static"
param-IsStatic='@("Yes")"

/>

For examples how to set initial parameters look at Viewer options

Steps for using TWPdfViewer component in MVC
1. Inyour HTML section of the page, you will need to add 2 CSS links.

File location: Views\Shared\_Layout.cshtml

<head>
<!-- your other head content -->
@RenderSection ("Head", required: false)

</head>

File location: Views\Home\{YOUR_VIEW}.cshtml (e.g. Index.cshtml)

@section Head {
<link rel="stylesheet"
href="/ content/Terminalworks.PdfViewer.AspNetCore/css/tw-pdf-
viewer.css" />

<link rel="stylesheet" id='tw-web-theme'
href="/ content/Terminalworks.PdfViewer.AspNetCore/css/themes/
white-shapes/tw-pdf-viewer-theme.

tw-pdf-viewer.css is a general CSS of TWPdfViewer and we recommend that you don't change it.
tw-pdf-viewer-theme.css is theme specific.

You can read more about changing theme at Changing the theme

Page 7 | support@terminalworks.com



; terminalworks

2. Add needed Javascript as shown in the example below

File location: Views\Shared\_Layout.cshtml

<head>
<!-- your other head content -->

@RenderSection ("Scripts", required: false)
</head>

File location: Views\Home\{YOUR_VIEW}.cshtml (e.g. Index.cshtml)

<body>

<!-- your other body content --

@section Scripts {
<script src='/ content/Terminalworks.PdfViewer.AspNetCore/Jjs/
pdf.js'></script>
<script sr / _content/Terminalworks.PdfViewer.AspNetCore/Jjs/
tw viewer.js'></script>

}

</body>

3. Add component to your page

File location: Views\Home\{YOUR_VIEW}.cshtml (e.g. Index.cshtml)

Qusing PdfViewer = Terminalworks.PdfViewer.AspNetCore

<component
type="typeof (PdfViewer)"

param-Id="@ ("twPdfViewerl")"
render-mode="Static"
param-IsStatic='@("Yes")'

/>

Page 8 | support@terminalworks.com



; terminalworks

Steps for using TWPdfViewer component in Blazor
1. Inyour HTML section of the page, you will need to add 2 CSS links.

File location: Pages\{YOUR_PAGE}.razor (e.g. Index.razor)

@section Head {
<link rel="stylesheet"
href="/ content/Terminalworks.PdfViewer.AspNetCore/ tw-pdf-
viewer.css" />

<link rel="stylesheet" id='tw-web-theme'
href="/ content/Terminalworks.PdfViewer.AspNetCore/css/themes/
white-shapes/tw-pdf-viewer-theme.css" />

tw-pdf-viewer.css is a general CSS of TWPdfViewer and we recommend that you don't change it.
tw-pdf-viewer-theme.css is theme specific.
You can read more about changing theme at Changing the theme

2. Add needed Javascript as shown in the example below

File location: Pages\_Host.cshtml

<body>
<!-- your other body content -->
<script src='/ content/Terminalworks.PdfViewer.AspNetCore/Js/
pdf.js'></script>
<script Src='/7content/Terminalworks.Pdfviewer.ASpNetCore/js/
tw viewer.js'></script>

</body>

3. Add the component to your page

File location: Pages\{YOUR_PAGE}.razor (e.g. Index.razor)

@using TWWebCorePdfViewer.Pages.Shared;
<TWPdfViewer />

If you use render-mode="Static" to make it work you need to add IsStatic="@("Yes")"

@Qusing TWWebCorePdfViewer.Pages.Shared;

<TWPdfViewer IsStatic="@ ("Yes=")" />

For examples how to set initial parameters look at Viewer options

Page 9 | support@terminalworks.com



; terminalworks

Steps for using TWPdfViewer component in WebAssembly
1. Inyour HTML section of the page, you will need to add 2 CSS links.

File location: wwwroot\{YOUR_PAGE}.html (e.g. index.html)

<link rel="stylesheet"
href="/ content/Terminalworks.PdfViewer.AspNetCore/css/tw-pdf-

<link rel="stylesheet" id="tw-web-theme"
href="/ content/Terminalworks.PdfViewer.AspNe =SS s/light/t

aal

w-pdf-viewer-theme.css" />

tw-pdf-viewer.css is a general CSS of TWPdfViewer and we recommend that you don't change it.
tw-pdf-viewer-theme.css is theme specific.
You can read more about changing theme at Changing the theme

1. Add needed Javascript as shown in the example below

File location: wwwroot\{YOUR_PAGE}.html (e.g. index.html)

<body>
<!-- your other body content -->
<script src='/ content/Terminalworks.PdfViewer.AspNetCore/
pdf.js'></script>
<script src='/ content/Terminalworks.PdfViewer.AspNetCore/Jjs/
tw viewer.js'></script>

</body>

2. Add the component to your page

File location: Pages\{YOUR_PAGE}.razor (e.g. Index.razor)

@Qusing TWWebCorePdfViewer.Pages.Shared;

<TWPdfViewer IsStatic="Q@ ("Yes=")" />

For examples how to set initial parameters look at Viewer options

Page 10 | support@terminalworks.com



6 terminalworks

Blazor component and Blazor rendering modes

Our TWPdfViewer is a Razor class library component.
It has 3 possible render modes in Blazor server app or in your ASP.NET Core RazorPages/MVC
web applications

1. ServerPrerendered

Renders the component into static HTML and includes a marker for a Blazor Server app. When
the user-agent starts, this marker is used to bootstrap a Blazor app.

2. Server

Renders a marker for a Blazor Server app. Output from the component isn't included. When the
user-agent starts, this marker is used to bootstrap a Blazor app.

3. Static

Renders the component into static HTML.

For WebAssembly app, from .NET 5, for hosted WebAssembly, available
render modes are:

1. WebAssembly

Renders a marker for a Blazor WebAssembly app for use to include an interactive component
when loaded in the browser. The component isn't prerendered. This option makes it easier to
render different Blazor WebAssembly components on different pages.

2. WebAssemblyPrerendered

Prerenders the component into static HTML and includes a marker for a Blazor WebAssembly
app for later use to make the component interactive when loaded in the browser.

Static rendering
TWPdfViewer doesn't have any need for interactivity with the server so recommended way is to
use Static rendering mode (for Blazor Server app) or WebAssembly render mode (for

WebAssembly web apps), but it will work also for other render modes.

In case static render is used, it is a mandatory to set additional parameter IsStatic="Yes".

More about integrating components from official documentation: Component tag helper

Page 11 | support@terminalworks.com


https://docs.microsoft.com/en-us/aspnet/core/mvc/views/tag-helpers/built-in/component-tag-helper?view=aspnetcore-6.0

; terminalworks
IE11 specifics

e |E11 doesn’t support WebAssembly at all.
e |E11 doesn’t support by default Blazor, but it is possible with a polyfill. In our testing
projects we used the polyfill found at: https://github.com/Daddoon/Blazor.Polyfill

e Bookmark view can't be resized and has fixed width size

Viewer Options

TWPdfViewer component has two parameters:

1. IsStatic
2. Options

IsStatic property is only important if render-mode is set to Static.
In that case, that property must be set to "Yes".
For remaining two rendering modes: Server and ServerPrerender that property can be omitted.

Setting properties is done through Options parameter.

Example for RazorPages/MVC:

@using PdfViewer = Terminalworks.PdfViewer.AspNetCore
<component
type="typeof (PdfViewer.Pages.Shared.TWPdfViewer)
render-mode="Static"
IsStatic="Yes"
param-Options='@new PdfViewer.Options {

1]

Bookmark = new PdfViewer.BookmarkOptions {
ShowBookmarksOnOpen = true,
BookmarksFullyExpanded = false,
PreserveBookmarksState true

Page 12 | support@terminalworks.com


https://github.com/Daddoon/Blazor.Polyfill

; terminalworks

Another way of defining options is in C# part:

using PdfViewer = Terminalworks.PdfViewer.AspNetCore;
var options = new PdfViewer.Options {
Bookmark = new PdfViewer.BookmarkOptions ({
ShowBookmarksOnOpen = true,

BookmarksFullyExpanded = false,
PreserveBookmarksState = true

And how to use them in Blazor app:

<TWPdfViewer Options='Qoptions' />

Rest of examples, for brevity, will show only how to change Options in C# code.
How to apply it depends if you are using RazorPages/MVC component (param-
Options='@options') or Blazor/WebAssembly (Options='@options')

Please note that application of the options described in this section depend on the initial set
up explained here.

In this example it will load document at web site's location test-pdf/pdfprint-manual.pdf and
show its second page.
Notes:

e if document is password protected it will show password prompt before loading the
document

e if external site allows CORS, it is also possible to set external URL

using PdfViewer = Terminalworks.PdfViewer.AspNetCore;

var options = new PdfViewer.Options {
DocumentUrl = "test-pdf/pdfprint-manual.pdf",
InitialPageNumber = 2

}i

Page 13 | support@terminalworks.com



; terminalworks

This example will load password protected document if the password is correct from the
secured document url.

SecuredDocumentUrl, also as password, is sent only for non-Static rendering.
Differences between DocumentUrl and SecuredDocumentUrl:
e DocumentUrl is visible in browser inspect element and SecuredDocumentUrl isn't
e DocumentUrl can be used for every blazor rendering type and SecuredDocumentUrl can't

be used for a Static rendering

Example for RazorPages/MVC:

@Qusing PdfViewer = Terminalworks.PdfViewer.AspNetCore
<component
type="typeof (PdfViewer.Pages.Shared.TWPdfViewer)"
render-mode="Server"

param-SecuredDocumentUrl="'Q ("test-pdf/password-protected.pdf") "',
param-Password = '@ ("testPassword")'

/>

Please note that application of the options described in this section depend on the initial set
up explained here.

This example will open viewer in multi-page view mode.
ViewerType has a default value of PdfViewer.ViewerTypes.MultiPageViewerMulti.

using PdfViewer = Terminalworks.PdfViewer.AspNetCore;

var options = new PdfViewer.Options {
ViewerType = PdfViewer.ViewerTypes.MultiPageViewer

}i

This example will open viewer in single-page view mode, which means it will show one page at a
time.

using PdfViewer = Terminalworks.PdfViewer.AspNetCore;

var options = new PdfViewer.Options {

ViewerType = PdfViewer.ViewerTypes.SinglePageViewer
bi

Page 14 | support@terminalworks.com



; terminalworks

Please note that application of the options described in this section depend on the initial set
up explained here.

In this example:
e it will show page in 70% of an original size (ZoomValue default value is 100)

If sZoomFitToPage == true, it would ignore ZoomValue property and it would calculate page size
according to the viewer component size. IsZoomFitToPage default value is true.

using PdfViewer = Terminalworks.PdfViewer.AspNetCore;

var options = new PdfViewer.Options {
Zoom = new PdfViewer.ZoomOptions
IsZoomFitToPage = false,
ZoomValue = 70

Page 15 | support@terminalworks.com



; terminalworks

Please note that application of the options described in this section depend on the initial set
up explained here.

This is an example which shows all available toolbar options and its default values.
If you are fine with the default value, you can omit it, otherwise set it to false.

using PdfViewer = Terminalworks.PdfViewer.AspNetCore;

var options = new PdfViewer.Options {
Toolbar = new PdfViewer.ToolbarOptions {

IsBookmarksVisible = true,
IsDocumentInfoVisible = true,
IsMultiViewVisible = true,
IsNextPageVisible = true,
IsNextVisitedVisible = true,
IsOpenVisible = true,
IsPageNumberVisible = true,
IsPreviousPageVisible = true,
IsPreviousVisitedVisible = true,
IsPrintVisible = true,
IsRotateClockwiseVisible = true,
IsRotateCounterClockwiseVisible = true,
IsDownloadVisible = true,
IsCloseVisible = true,
IsSearchVisible = true,
IsSingleViewVisible = true,
IsToolbarVisible = true,
IsTooltipVisible = true,
IsZoomDropDownVisible = true,
IsZoomInVisible = true,
IsZoomOutVisible = true

Example how to hide Bookmark and Document info buttons from the toolbar:

using PdfViewer = Terminalworks.PdfViewer.AspNetCore;

var options = new PdfViewer.Options {
Toolbar = new PdfViewer.ToolbarOptions {

IsBookmarksVisible = false,
IsDocumentInfoVisible = false

support@terminalworks.com



; terminalworks

Please note that application of the options described in this section depend on the initial set
up explained here.

By default, TextSelectionDisabled has value false so text selection is enabled.
This example will disable mouse text selection.

using PdfViewer = Terminalworks.PdfViewer.AspNetCore;

var options = new PdfViewer.Options {
TextSelectionDisabled = true

b

Please note that application of the options described in this section depend on the initial set
up explained here.

More in detail at -> Translating Ul and messages

Please note that application of the options described in this section depend on the initial set
up explained here.

This is an example which show all available FindOptions properties and its default values.
If you are fine with the propertie's default value, you can omit it, otherwise set it to true.

using PdfViewer = Terminalworks.PdfViewer.AspNetCore;

var options = new PdfViewer.Options {
Find = new PdfViewer.FindOptions {
CaseSensitive = false,
HighlightAll = false,
WholeWord = false

Page 17 | support@terminalworks.com



; terminalworks

This example shows how to have case sensitive search.

using PdfViewer = Terminalworks.PdfViewer.AspNetCore;

var options = new PdfViewer.Options {
Find = new PdfViewer.FindOptions {
CaseSensitive = true

Please note that application of the options described in this section depend on the initial set
up explained here.

In this example:

e  bookmarks will be shown automatically on document load if the document have it
(ShowBookmarksOnOpen default value is false)

e shown bookmarks will not be in fully expanded state (BookmarksFullyExpanded default
value is false)

e once closed bookmarks on reopen will preserve expanded bookmark items
(PreserveBookmarksState default value is false)

using PdfViewer = Terminalworks.PdfViewer.AspNetCore;
var options = new PdfViewer.Options {

Bookmark = new PdfViewer.BookmarkOptions ({
ShowBookmarksOnOpen = true,

BookmarksFullyExpanded = false,
PreserveBookmarksState = true

Page 18 | support@terminalworks.com



; terminalworks

Customization

ASP.NET Core PDF Viewer comes with various options of customization. Starting from changing
the fonts to suit your needs all the way to adjusting the whole theme. You can explore all the
options in the guides attached to this section.

You can use one of already built-in themes or you can create yours.
In current version, available built-in themes are:

e blue-circle

o blue-element

e  blue-grey

e colorful-morphism
e dark-cyan

e dynamic-purple
o light

e purple-blue

e red-purple

e forest-brown

e white-shapes

List of available built-in themes can be obtained by calling from Javascript:

window.TWPdfViewerUtil.getBuiltInThemes () ;

Must have id="tw-web-theme", otherwise it will not work changing theme through Javascript.
There are two ways to change the theme:

1. Directly in HTML

<link rel="stylesheet"

href="/ content/Terminalworks.PdfViewer.AspNetCore/css/themes/{THEME
NAME} /tw-pdf-viewer-theme.css" id="tw-web-theme" />

Example:

<link rel="stylesheet"

href="/ content/Terminalworks.PdfViewer.AspNetCore/css/themes/white-
shapes/tw-pdf-viewer-theme.css" id="tw-web-theme" />

Page 19 | support@terminalworks.com



; terminalworks

Or if you're using your custom theme:

<link rel="stylesheet" href="{URL TO YOUR CSS FILE}" id="tw-web-

theme" />

2. From Javascript

Using one of the built-in themes:

window.TWPdfViewerUtil.changeThemeByName (" {THEME NAME}") ;

Example:

window.TWPdfViewerUtil.changeThemeByName ("blue-circle");

Or if you are using your custom theme:

window.TWPdfViewerUtil.changeThemeBySrcUrl ("{URL TO YOUR CSS FILE}");

Example:

/

window.TWPdfViewerUtil.changeThemeBySrcUrl ("/css/custom-theme.css");

In both ways, every instance of TWPdfViewer on-page will be affected.

If you would like to use yours icons for the buttons or/and change colors of the TWPdfViewer,
you can. Take some of the existing CSS themes (like css/light/tw-pdf-viewer-light.css) as a
template, change its colors and src to your image buttons files.

On your HTML page, instead of link to:

<link

href="/ co
light-theme.

Page 20 | support@terminalworks.com



; terminalworks

Use:

<link rel="stylesheet" href="{path to your css}" />

Note: You can use multiple instances of the viewer on the same page, but it isn't possible to use
different CSS theme. CSS viewer theme is loaded per page and affects all the instances.

The main font used by the component is: Arial

The fallback fonts are: Verdana, Helvetica, Tahoma, Helvetica Neue, -apple-system, Liberation
Sans

Arial, Verdana, Helvetica, Tahoma, Helvetica Neue are available on Windows and the latest
versions of OS X.

Arial is also available on certain Linux distributions.

In case Arial and all the consecutive fonts are not available on Linux, the fallback font will be
Liberation Sans which is the metric equivalent of Arial font.

-apple-system is here just to make sure older versions of OS X are covered in case the preceding
fonts are not available.

This way we made sure our component will look and feel the same on a wide array of operating
systems and their versions.

The class where fonts are defined is the following and you can find it in tw-pdf-viewer.css file:

.tw201l8elem mainContainer[data-tw2018-pdf-viewer] {
text-align: left;
position: relative;
font-family: Arial, "Verdana, Helvetica, Tahoma, "Helvetica

Neue",
-apple-system, "Liberation Sans";
font-size: 1l4px;
font-weight: 400;

}

In case you wish to load your custom font, first, you need to specify your own font-family name
using @font-face like in the example below:

@font-face({
font-family: myAwesomeCustomFont;

src: url (perfect grey.woff)

}

Page 21 | support@terminalworks.com



; terminalworks

Afterwards, define your custom font in .tw2018elem_mainContainer[data-tw2018-pdf-viewer]
class, make sure to position your custom font first when defining it in the font-family property:

.tw2018elem mainContainer[data-tw2018-pdf-viewer] {

text-align: left;

position: relative;

font-family: myAwesomeCustomFont, Arial, Verdana, Helvetica,
Tahoma, "Helvetica Neue",

-apple-system, "Liberation Sans";
font-size: 14px;
font-weight: 400;

If you'd like to use your own custom font on a few components only, make sure to override the
default font-family directly on those components by creating your own custom class or adding the
custom font-family in already available CSS on that component.

By default, text is in English. It can be ovveriden.
There are five types of text:

e Aria-labels for accessibility
e Toolbar button's tooltips

o Messages

e Document info

e Miscellaneous text

TWPdfViewer has a property Options which has a property Texts.
Texts has properties:

o Messages

e DocumentinfoTexts
e MiscTexts

e ArialLabels

e Tooltips.

Page 22 | support@terminalworks.com



E; terminalworks

DocumentinfoText properties and its default values:

Author = "Author:"
CreationDate = "CreationDate:"
Creator = "Creator:"

FileName = "FileName:"
FileSize = "FileSize:"

Keywords = "Keywords:"
ModificationDate = "ModificationDate:"
PageCount = "Page Count:"
PageSize = "Page Size:"
PDFProducer = "PDF Producer:"
PDFVersion = "PDF Version:"
Subject = "Subject:"

Title= "Title:"

Arialabels properties and its default values:

CloseBookmarks = "Close bookmarks"
ClosePdfDocumentBtn = "Close PDF document"
CurrentPage = "Current page"
CurrentZoomValue = "Current zoom value"
DocumentlinfoBtn = "Document information"
DownloadBtn = "Download PDF document"
NextFindBtn = "Next find"

NextPageBtn = "Next page"
NextVisitedPageBtn = "Next visited page"
MessageCloseBtn = "Message close"
MultiPageViewBtn = "Multi page view"
OpenBtn = "Open PDF document"
PasswordField = "Password"

PreviousFindBtn = "Previous find"
PreviousPageBtn = "Previous page"
PreviousVisitedBtn = "Previous visited page"
PrintBtn = "Print PDF document"
RotateClockwiseBtn = "Rotate clockwise"
RotateCounterClockwiseBtn = "Rotate counter-clockwise'
SearchBtn = "Search"

SearchOptionsBtn = "Search options"
SearchTerm = "Search term"
ShowBookmarksBtn = "Show bookmarks"
SinglePageViewBtn = "Single page view"
ZoomDropDownArrow = "Open zoom drop-down"
ZoomInBtn = "Zoom in"

ZoomOutBtn = "Zoom out"

Page 23

| support@terminalworks.com



E; terminalworks

MiscText properties and its default values:

CancelBtn = "Cancel"

CloseBtn = "Close"

EnterPassword = "Enter the password to open this PDF File"
FindInDocument = "Find in document..."

HighlightAll = "Highlight all"

MatchCase = "Match case"

OKBtn = "OK"

ZoomActualSize = "Actual page size"

ZoomPagelevel = "Zoom to page level"

WholeWord = "Whole word"

Tooltips properties and its default values:

ClosePdfDocumentBtn = "Close PDF document"
DocumentinfoBtn = "Document information"
DownloadBtn = "Download PDF document"
MultiPageViewBtn = "Multi page view"
NextPageBtn = "Next page"
NextVisitedPageBtn = "Next visited page"
OpenBtn = "Open PDF document"
PreviousPageBtn = "Previous page"
PreviousVisitedBtn = "Previous visited page"
PrintBtn = "Print PDF document"
ShowBookmarksBtn = "Show bookmarks"
SinglePageViewBtn = "Single page view"
RotateClockwiseBtn = "Rotate clockwise"
RotateCounterClockwiseBtn = "Rotate counter-clockwise"
ZoomInBtn = "Zoom in"

ZoomOutBtn = "Zoom out"

Messages properties and its default values:

FindReachedBottom = "Reached end of document, continued from top."
FindReachedTop = "Reached top of document, continued from bottom."
InvalidPassword = "Wrong password, please try again."
LoadDocumentError = "Load document error:"

PrintingPopupWarning = "For direct printing, popup must be allowed."
PreparingForPrint = "Preparing pages for print:"

TextNotFound = "Text not found."

UnknownError = "Unknown error"

Page 24 | support@terminalworks.com



; terminalworks

Example

Example how to change MiscText.FindinDocument in Razor pages

using PdfViewer = Terminalworks.PdfViewer.AspNetCore;

<component type="typeof (PdfViewer.Pages.Shared.TWPdfViewer)"
render-mode="Static"

param-IsStatic="'@("Yes")
param-Options='@new PdfViewer.Options {

]

Texts = new PdfViewer.ViewerTexts {
MiscText = new PdfViewer.Texts.MiscText {
FindInDocument = "Trova in documento"

}
}

}r>/>

Another way of changing texts — UserDefined property dictionary

This could be useful, if you have different files with translations for different languages

var options = new Terminalworks.PdfViewer.AspNetCore.Options();
var userDefined = new Dictionary<string, string>
{
{ TextCodeNames.Arialabels.CurrentPage, "La pagina attuale" }
// you can override all or just some texts...

}i
options.Texts new ViewerTexts

{

UserDefined userDefined
}i

Page 25 | support@terminalworks.com



	About
	Requirements
	Supported browsers
	Supported functionalities
	Standard viewer features
	Licensing
	How to apply license?

	Installation
	RazorPages
	MVC
	Blazor
	WebAssembly

	Blazor component and Blazor rendering modes
	For WebAssembly app, from .NET 5, for hosted WebAssembly, available render modes are:
	Static rendering

	IE11 specifics
	IE11 and Blazor/WebAssembly
	IE11 and our WEB PDF viewer known issues

	Viewer Options
	How to open document automatically
	Switching between single and multi page view
	Setting available zoom options
	Setting available toolbar options
	How to enable or disable text selection
	How to change or translate component built-in texts
	Setting available find options
	Setting available bookmarks options

	Customization
	Changing the theme
	Creating custom CSS theme
	Managing fonts
	Translating UI and messages


